Characterization of the Heterokaryotic and Vegetative Diploid Phases of MAGNAPORTHE GRISEA.

نویسندگان

  • M S Crawford
  • F G Chumley
  • C G Weaver
  • B Valent
چکیده

The heterokaryotic and vegetative diploid phases of Magnaporthe grisea, a fungal pathogen of grasses, have been characterized. Prototrophic heterokaryons form when complementary auxotrophs are paired on minimal medium. Hyphal tip cells and conidia (vegetative spores) taken from these heterokaryons are auxotrophs with phenotypes identical to one or the other of the parents. M. grisea heterokaryons thus resemble those of other fungi that have completely septate hyphae with a single nucleus per cell. Heterokaryons have been utilized for complementation and dominance testing of mutations that affect nutritional characteristics of the fungus. Heterokaryons growing on minimal medium spontaneously give rise to fast-growing sectors that have the genetic properties expected of unstable heterozygous diploids. In fast-growing sectors, most hyphal tip cells are unstable prototrophs. The conidia collected from fast-growing sectors include stable and unstable prototrophs, as well as auxotrophs that exhibit a wide range of phenotypes, including many recombinant classes. Genetic linkage in meiosis has been detected between two auxotrophic mutations that recombine in vegetatively growing unstable diploids. The appearance of recombinants suggests that homologous recombination occurs during vegetative growth of M. grisea. No interstrain barriers to heterokaryosis and diploid formation have been detected. The mating type of the strains that are paired does not influence the formation of heterokaryons or diploids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and Phylogenetic Analysis of Magnaporthe spp. strains on Various Hosts in Iran

Background: Populations of Magnaporthe, the causal agent of rice blast disease, are pathotypically and genetically diverse and therefore their interaction with different rice cultivars and also antagonistic microorganisms are very complicated. Objectives: The objectives of the present study were to characterize phylogenetic relationships of 114 native  Magnaporthe strains, isolated from rice a...

متن کامل

The Adenylate Cyclase Gene MACI of Magnaporthe grisea Controls Appressorium Formation and Other Aspects of Growth and Development

Magnaporthe grisea, the causal agent of rice blast disease, differentiates a specialized infection structure called an appressorium that is crucial for host plant penetration. Previously, it was found that cAMP regulates appressorium formation. To further understand the cellular mechanisms involved in appressorium formation, we have cloned a gene (MACl) encoding adenylate cyclase, a membrane-bo...

متن کامل

Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea.

CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine beta-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.

متن کامل

Title Molecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea

1 CBS1 from Magnaporthe grisea is a structural and functional homolog of the 2 cystathionine beta synthase (CBS) gene from Saccharomyces cerevisiae. Our studies 3 indicated that M. grisea can utilize homocysteine and methionine through a CBS4 independent pathway. Results also revealed responses of M. grisea to homocysteine that 5 are reminiscent of human homocystinuria. 6

متن کامل

Inheritance of dsRNAs in the rice blast fungus, Magnaporthe grisea.

The 1.6 and 1.8 kbp dsRNAs have been found in the rice blast fungus, Magnaporthe grisea strain MG01. These dsRNA molecules are located in cytoplasm of the fungal cells and maintained stably during vegetative growth. Three crosses between dsRNA free and dsRNA containing strains including a parental cross, sib-mating and back cross were made to follow the inheritance of dsRNAs during sexual repro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 114 4  شماره 

صفحات  -

تاریخ انتشار 1986